Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 12006 | |
Number of page(s) | 8 | |
Section | Quantum Computing | |
DOI | https://doi.org/10.1051/epjconf/202429512006 | |
Published online | 06 May 2024 |
- M. Zidan, H. Eleuch, M. Abdel-Aty, Results in Physics 21, 103536 (2021) [CrossRef] [Google Scholar]
- J. Preskill, Quantum 2, 79 (2018) [CrossRef] [Google Scholar]
- H.Y. Huang, M. Broughton, M. Mohseni et al., Nature Communications 12 (2021) [Google Scholar]
- L. Clissa, Survey of big data sizes in 2021 (2022) [Google Scholar]
- CERN, Worldwide lhc computing grid, accessed in June 2022, https://wlcg-public.web.cern.ch/ [Google Scholar]
- H. Zheng, Z. Li, J. Liu, S. Strelchuk, R. Kondor, On the super-exponential quantum speedup of equivariant quantum machine learning algorithms with su(d) symmetry (2022), https://arxiv.org/abs/2207.07250 [Google Scholar]
- S.L. Wu et al., PoS EPS-HEP2021, 842 (2022) [Google Scholar]
- A. Khrennikov, The European Physical Journal Special Topics 230 (2021) [Google Scholar]
- M. Weigold, J. Barzen, F. Leymann, M. Salm, Data Encoding Patterns for Quantum Computing, in Proceedings of the 27th Conference on Pattern Languages of Programs (The Hillside Group, USA, 2020), PLoP ’20, ISBN 9781941652169 [Google Scholar]
- M. Weigold, J. Barzen, F. Leymann, M. Salm, Expanding Data Encoding Patterns For Quantum Algorithms, in 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C) (2021), pp. 95–101 [Google Scholar]
- J.G. Liu, L. Wang, Physical Review A 98 (2018) [Google Scholar]
- A. Khoshaman, W. Vinci, B. Denis, E. Andriyash, H. Sadeghi, M.H. Amin, Quantum Science and Technology 4, 014001 (2018) [CrossRef] [Google Scholar]
- J.X. Tong Li, Shibin Zhang, Computers, Materials & Continua 64, 401 (2020) [CrossRef] [Google Scholar]
- F. Rehm, S. Vallecorsa, K. Borras, D. Krücker, Quantum machine learning for HEP detector simulations (2021), http://ceur-ws.org/Vol-3041/363-368-paper-67. pdf [Google Scholar]
- P.L. Dallaire-Demers, N. Killoran, Physical Review A 98 (2018) [CrossRef] [Google Scholar]
- Blinded citation for review (-), - [Google Scholar]
- S. Agostinelli et al., GEANT4–a simulation toolkit (2003), Vol. 506, pp. 250–303 [Google Scholar]
- A.e.a. Albrecht, Alvesand, A Roadmap for HEP Software and Computing Research and Development for the 2020s (2019), Vol. 3 [Google Scholar]
- J. Apostolakis, Detector Simulation (Springer International Publishing, Cham, 2020), pp. 485–531, ISBN 978-3-030-35318-6 [Google Scholar]
- I. Kadochnikov, I. Bird, G. McCance, J. Schovancova, M. Girone, S. Campana, X.E. Currul, Advisory committee p. 127 (2018) [Google Scholar]
- X. Ju, D. Murnane, P. Calafiura et al., The European Physical Journal C 81, 1 (2021) [CrossRef] [Google Scholar]
- C. Biscarat, S. Caillou, C. Rougier, J. Stark, J. Zahreddine, Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC, in EPJ Web of Conferences (EDP Sciences, 2021), Vol. 251, p. 03047, https://www.epj-conferences.org/articles/epjconf/pdf/2021/ 05/epjconf_chep2021_03047.pdf [Google Scholar]
- E. Sela, S. Huang, D. Horn, Algorithms 15, 115 (2022) [CrossRef] [Google Scholar]
- C. Fabjan, F. Gianotti, Reviews of Modern Physics 75 (2003) [Google Scholar]
- M. Pierini, M. Zhang, CLIC Calorimeter 3D images: Electron showers at Fixed Angle (2020), https://doi.org/10.5281/zenodo.3603122 [Google Scholar]
- F. Rehm, Downsampled Calorimeter Shower Images to 8 Pixels (2021), https://doi. org/10.5281/zenodo.7025233 [Google Scholar]
- A. Gretton et al., J. Mach. Learn. Res. 13, 723 (2012) [Google Scholar]
- T. Hofmann, B. Scholkopf, A. Smola, Annals of Statistics 36, 1171 (2007) [Google Scholar]
- A.H. Alhabsi, Improved SPSA optimization algorithm requiring a single measurement per iteration, in 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010) (2010), pp. 263–265 [Google Scholar]
- T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A Next-generation Hyperparameter Optimization Framework (2019), 1907.10902 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.