Open Access
Issue
EPJ Web Conf.
Volume 302, 2024
Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (SNA + MC 2024)
Article Number 17011
Number of page(s) 11
Section Artificial Intelligence & Digital in Nuclear Applications - Quantum Computing
DOI https://doi.org/10.1051/epjconf/202430217011
Published online 15 October 2024
  1. F.D. Brooks, H. Klein, Neutron spectrometry—historical review and present status, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 476, Issues 1-2, 2002, Pages 1–11, ISSN 0168-9002, https://doi.org/10.1016/S0168-9002(01)01378-X.l. [Google Scholar]
  2. Bramblett, Richard L.; Ewing, Ronald I.; Bonner, T.W. (1960). “A new type of neutron spectrometer”. Nuclear Instruments and Methods. 9 (1): 1–12. [Google Scholar]
  3. J.M. Gómez-Ros, R. Bedogni, C. Domingo, J.S. Eakins, N. Roberts, R.J. Tanner, Results of the EURADOS international comparison exercise on neutron spectra unfolding in Bonner spheres spectrometry, Radiation Measurements, Volume 153, 2022, 106755, ISSN 13504487, https://doi.org/10.1016/j.radmeas.2022.106755.). [Google Scholar]
  4. Martinez Blanca et al. 2020, A Neutron Spectrum Unfolding Code Based on Generalized Regression Artificial Neural Networks, EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, Volume 7, Issue 24. [Google Scholar]
  5. C. Cao, Q. Gan, J. Song, K. Yang, L. Hu, F. Wang, T. Zhou, An adaptive deviationresistant neutron spectrum unfolding method based on transfer learning, Nuclear Engineering and Technology, 52, 2452–2459 (2020). [Google Scholar]
  6. J. Wang, Z. Guo, X. Chen, Y. Zhou, Neutron spectrum unfolding based on generalized regression neural networks for neutron fluence and neutron ambient dose equivalent estimations, Applied Radiation and Isotopes, 154, 108856 (2019). [Google Scholar]
  7. C. Cao, Q. Gan, J. Song, P. Long, B. Wua, Y. Wua, A two-step neutron spectrum unfolding method for fission reactors based on artificial neural network, Annals of Nuclear Energy, 139 (2020) 107219. [Google Scholar]
  8. Jie Wang, Yulin Zhou, Zhirong Guo, Haifeng Liu, Neutron spectrum unfolding using three artificial intelligence optimization methods, Applied Radiation and Isotopes, 147 (2019) 136–143. [Google Scholar]
  9. Goldberg, David E. and John H. Holland. “Genetic Algorithms and Machine Learning.” Machine Learning 3(1988): 95–99. [CrossRef] [Google Scholar]
  10. Holland, John H. “Genetic Algorithms.” Scientific American, vol. 267, no. 1, 1992, pp. 66–73. [CrossRef] [PubMed] [Google Scholar]
  11. Bouhadida, Asmae Mazzi, Mariya Brovchenko, Thibaut Vinchon, Mokhtar Z. Alaya, Wilfried Monange, François Trompier, Neutron spectrum unfolding using two architectures of convolutional neural networks, Nuclear Engineering and Technology, 2023, ISSN 17385733, https://doi.org/10.1016Zj.net.2023.03.025. [Google Scholar]
  12. Maha Bouhadida, Mariya Brovchenko, Thibaut Vinchon, Wilfried Monange, Francois Trompier. Neutron spectra reconstruction based on an artificial neural network trained with a large built dataset. ICRS 14/RPSD 2022 (14th International Conference on Radiation Shielding and 21st Topical Meeting of the Radiation Protection and Shielding Division), ANS, Sep 2022, Seattle, United States. (hal-03900950) [Google Scholar]
  13. Leppänen, J., et al. (2015) “The Serpent Monte Carlo code: Status, development and applications in 2013.” Ann. Nucl. Energy, 82 (2015) 142–150. [Google Scholar]
  14. Katoch, S., Chauhan, S.S. & Kumar, V. A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80, 8091–8126 (2021). https://doi.org/10.1007/s11042-020-10139-6 [CrossRef] [PubMed] [Google Scholar]
  15. A. Lambora, K. Gupta and K. Chopra, “Genetic Algorithm- A Literature Review,” 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019, pp. 380–384, DOI: 10.1109/COMITCon.2019.8862255. [Google Scholar]
  16. John McCall, Genetic algorithms for modelling and optimization, Journal of Computational and Applied Mathematics, Volume 184, Issue 1, 2005, Pages 205–222, ISSN 0377-0427, https://doi.org/10.1016/j.cam.2004.07.034. [CrossRef] [Google Scholar]
  17. Tolstikhin, Ilya O., et al. “Mlp-mixer: An all-mlp architecture for vision.” Advances in neural information processing systems 34 (2021): 24261–24272. [Google Scholar]
  18. S. Albawi, T. A. Mohammed and S. Al-Zawi, “Understanding of a convolutional neural network,” 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1–6, DOI: 10.1109/ICEngTechnol.2017.8308186. [Google Scholar]
  19. Scikit-learn documentation: https://scikit-learn.org/stable/whatsnew/v1.2.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.