Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 06040 | |
Number of page(s) | 11 | |
Section | Advanced Modelling and Simulation | |
DOI | https://doi.org/10.1051/epjconf/202124706040 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124706040
GEN-FOAM MODEL AND BENCHMARK OF DELAYED NEUTRON PRECURSOR DRIFT IN THE MOLTEN SALT REACTOR EXPERIMENT
University of California, Berkeley Department of Nuclear Engineering, Berkeley, CA 94720, USA
junshi@berkeley.edu
maxfratoni@berkeley.edu
Published online: 22 February 2021
The effective delayed neutron fraction is an important reactor kinetics parameter. In flowing liquid-fuel reactors, this differs from the delayed neutron fraction because of the emission of delayed neutrons with a lower energy spectrum than prompt and the delayed neutron precursor (DNP) drift due to the fuel movement. In general, neglecting delayed neutron precursor drift leads to an over-estimation of the effective delayed neutron fraction. Nevertheless, the capability to simulate this peculiar phenomenon is not available in most reactor physics tools. In this project, a multi-physics approach to modeling DNP drift is developed using the GeN-Foam toolkit, and it benchmarked against available experimental data from the Molten Salt Reactor Experiment (MSRE). GeN-Foam couples a neutron diffusion solver with a thermal-hydraulics solver. Additionally, a new function was added for solving adjoint multi-group diffusion eigenvalue problems and calculating effective delayed neutron fraction. For benchmarking, an R-Z model of the MSRE was developed in GeN-Foam. The porous media model was applied, and cross sections were generated using the Monte Carlo code Serpent-2 with ENDF/B-VII.1 nuclear data library. In order to evaluate the impact of DNP drift, two steady-state conditions (stationary and flowing salt at 1200 gpm) were simulated. A reactivity change of -241 pcm was calculated using GeN-Foam for the MSRE between static and flowing fuel, which is in a good agreement with the experimental value of -212 pcm. The total effective delayed neutron fraction change was calculated to be -230 pcm vs. -304 pcm reported for the MSRE and analytical calculated during the experimental campaign. Three transient accidents were also analyzed.
Key words: GeN-Foam / Delayed Neutron Precursor Drift / Effective Delayed Neutron Fraction / Molten Salt Reactor Experiment (MSRE)
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.