Issue |
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 04021 | |
Number of page(s) | 5 | |
Section | Research Reactors and Particle Accelerators | |
DOI | https://doi.org/10.1051/epjconf/202328804021 | |
Published online | 21 November 2023 |
https://doi.org/10.1051/epjconf/202328804021
Reactivity modulation experiments for nuclear data in CROCUS within a CEA-EPFL collaboration
1 CEA, DES, IRESNE, DER, SPESI, LP2E, Cadarache F-13108 Saint-Paul-Lez-Durance, France
2 Laboratory for Reactor Physics and Systems Behaviour (LRS), Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Published online: 21 November 2023
In nuclear research reactors, integral experiments are powerful tools to measure integral core parameters, such as the delayed neutron fraction. Within the scope of the point kinetic approximation, reactivity modulation experiments can be used for probing the reactor transfer function and then infer integral parameters of the core.
In this context, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Ecole Polytechnique Fédérale de Lausanne (EPFL) have been collaborating for developing a probe device (PISTIL) and measurement setup adapted to the CROCUS zero power research reactor operated by EPFL (Lausanne, Switzerland).
Despite some mechanical limitations of PISTIL, its maximum reactivity worth was measured with a good precision and repeatability using different methods (8.82 ±0.07 pcm), and its value is found rather close to the simulated one using TRIPOLI-4 (9.4 ± 0.4 pcm with JEFF-3.3). Above 1 Hz, the shape of the used modulation is pseudo-sinusoidal, with only a few well defined harmonics of excitation. The strongest harmonic only was analyzed using standard signal processing algorithms such as the Fourier transform and the Bartlett estimator. Twelve data points were produced in the range 0.5 Hz to 200 Hz, with uncertainty ranging from 1 % to 15 %. The prompt decay constant was measured at 150 ± 3 rad/s. Below 1 Hz, stepwise modulations were used with pseudo-random time sequences, which allowed exciting at once a large number of frequencies. Around 150 data points were produced in this particularly interesting frequency domain, between 1.6 mHz and 0.75 Hz, thanks to the use of three distinctive sequences with different base frequencies and overlapping ranges. The amplitude and phase of the RTF were measured satisfactorily, with uncertainties below 1 % for the strongest harmonics. The shape of the RTF was found consistent with the predictions of both JEFF-3.3 and ENDF/B-VII.1 libraries.
Key words: Reactor physics / reactor transfer function / CROCUS / delayed neutron groups
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.