Open Access
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
Article Number 01021
Number of page(s) 7
Section 1 - Online and Real-time Computing
Published online 16 November 2020
  1. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST, 3 S08003, (2008). [Google Scholar]
  2. ATLAS Collaboration, Technical Design Report for the Phase-II Upgrade of the ATLAS Muon Spectrometer, Technical Report CERN-LHCC-2017-017, ATLAS-TDR-026, (2017). [Google Scholar]
  3. ATLAS Collaboration, Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System, Technical Report CERN-LHCC-2017-020, ATLAS-TDR-029, (2017). [Google Scholar]
  4. M. Courbariaux, Y. Bengio, and J.-P. David, Binaryconnect: Training deep neural networks with binary weights during propagations. In Advances in Neural Information Processing Systems, pages 3123-3131, (2015). [Google Scholar]
  5. F. Li and B. Liu, Ternary Weight Networks, arXiv:1605.04711 [cs.CV], (2016). [Google Scholar]
  6. E. Nurvitadhi et al., Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?, Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 5-14, (2017). [CrossRef] [Google Scholar]
  7. N. Suda, et al., Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks, Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, (2016). [Google Scholar]
  8. T. Boser, P. Calafiura and I. Johnson, Convolutional neural networks for track reconstruction on fpgas, NIPS 2017, (2017). [Google Scholar]
  9. J. Duarte et al., Fast inference of deep neural networks in FPGAs for particle physics, JINST, 13, P07027, (2018). [CrossRef] [Google Scholar]
  10. N. Nottbeck, C. Schmitt, V. Büscher, Implementation of high-performance, sub-microsecond deep neural networks on FPGAs for trigger applications, JINST, 14, P09014, (2019). [CrossRef] [Google Scholar]
  11. ATLAS Collaboration, L0 Muon Trigger Public Results, (2019). [Google Scholar]
  12. K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv:1409.1556 [cs.CV], (2014). [Google Scholar]
  13. Y. LeCun, Y., Generalization and network design strategies. Technical Report CRG-TR-89-4, University of Toronto, (1989). [Google Scholar]
  14. Y. Zhou, and R. Chellappa, Computation of optical flow using a neural network. In Neural Networks 1988, IEEE International Conference on, pages 71-78. IEEE, (1988). [Google Scholar]
  15. X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier neural networks. In AISTATS’2011, (2011). [Google Scholar]
  16. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, (2016). [Google Scholar]
  17. S. Ioffe, S. Christian, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs.LG], (2015). [Google Scholar]
  18. D.P. Kingma, and J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 [cs.LG] (2014). [Google Scholar]
  19. Xilinx, Vivado Design Suite User Guide - High-Level Synthesis, (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.