Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 12006
Number of page(s) 9
Section Fuel Performance and Management
Published online 22 February 2021
  1. G. Youninou, F. Heidet, A. Abou Jaoude, S. Bays, T. Fei, G. Palmiotti, and M. Smith, March 2018 VTR Reference Core Concept, ECAR-4072, Project 32833, April 2018. [Google Scholar]
  2. T.O. Sauar, “Application of Linear Programming to In-Core Fuel management Optimization in Light Water Reactors,” Nucl. Sci. Eng., 46, 274 (1971). [Google Scholar]
  3. D. Tabak, “Optimization of Nuclear Reactor Fuel Recycle via Linear and Quadratic Programming,” IEEE Trans. Nucl. Sci., NS-15, 60 (1968). [Google Scholar]
  4. I. Wall and H. Fenech, “The Application of Dynamic Programming to Fuel Management Optimization,” Nucl. Sci. Eng., 22, 285 (1965). [Google Scholar]
  5. H. Motoda, “Optimization of Control Rod Programming and Loading pattern in Multiregion Nuclear Reactor by the Method of Approximation Programming,” Nucl. Sci. Eng., 49, 515 (1972). [Google Scholar]
  6. G.T. Parks, “An Intelligent Stochastic Optimization Routine for Nuclear Fuel Cycle Design,” Nuclear Technology, 89(2), 233-246 (1990). [Google Scholar]
  7. F. Alim, K. Ivanov, and S.H. Levine, “New genetic algorithms (GA) to optimize PWR reactors Part I: Loading pattern and burnable poison placement optimization techniques for PWRs,” Annals of Nuclear Energy, 35(1), 93-112 (2008). [Google Scholar]
  8. J. Washington and J. King, “Optimization of plutonium and minor actinide transmutation in an AP1000 fuel assembly via a genetic search algorithm,” Nuclear Engineering and Design, 311, 199-212, (2017). [Google Scholar]
  9. A.V. Sobolev, A.S. Gazetdinov, and D.S. Samokhin, “Genetic algorithms for nuclear reactor fuel load and reload optimization problems,” Nuclear Energy and Technology, 3, 231-235 (2017). [Google Scholar]
  10. S. Liu, J. Cai, “Studies of fuel loading pattern optimization for a typical pressurized water reactor (PWR) using improved pivot particle swarm method,” Annals of Nuclear Energy, 50, 117-125, (2012). [Google Scholar]
  11. B.M. Adams et al., “Dakota: A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 5.4 Theory Manual,” Sandia National Laboratories (2013). [Google Scholar]
  12. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Boston, MA, USA (1989). [Google Scholar]
  13. M. Jarrett and F. Heidet, “Fuel Loading Optimization and Planning for the Versatile Test Reactor,” [Google Scholar]
  14. G. Palmiotti et al, “Variational nodal transport methods with anisotropic scattering,” Nuclear Science and Engineering, 115, 233-243 (1993). [Google Scholar]
  15. B. J. Toppel, “A User’s Guide to the REBUS-3 Fuel Cycle Analysis Capability,” ANL- 83-2, Argonne National Laboratory (1983). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.