Open Access
Issue
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 04022
Number of page(s) 8
Section Research Reactors and Particle Accelerators
DOI https://doi.org/10.1051/epjconf/202125304022
Published online 19 November 2021
  1. A.-C. Colombier, H. Amharrak, D. Fourmentel, S. Ravaux, D. Re´gnier, O. Gueton, J.-P. Hudelot, and M. Lemaire, “Nuclear data production, calculation and measurement: a global overview of the gamma heating issue, ” EPJ Web of Conferences, vol. 42, p. 04001, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  2. G. Rimpault, D. Bernard, D. Blanchet, C. Vaglio-Gaudard, S. Ravaux, and A. Santamarina, “Needs of accurate prompt and delayed γ-spectrum and multiplicity for nuclear reactor designs, ” Physics Procedia, vol. 31, pp. 3–12, 2012. [CrossRef] [Google Scholar]
  3. D. Beddingfield and F. Cecil, “Identification of fissile materials from fission product gamma-ray spectra, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 417, no. 2-3, pp. 405–412, nov 1998. [CrossRef] [Google Scholar]
  4. C. Willman, A. Ha˚kansson, O. Osifo, A. Ba¨cklin, and S. J. Sva¨rd, “Nondestructive assay of spent nuclear fuel with gamma-ray spectroscopy, ” Annals of Nuclear Energy, vol. 33, no. 5, pp. 427–438, mar 2006. [CrossRef] [Google Scholar]
  5. F. Maienschein, R. Peelle, W. Zobel, and T. Love, “Gamma rays associated with fission, ” Oak Ridge National Laboratory, Tech. Rep., oct 1958. [Google Scholar]
  6. S. Oberstedt, R. Billnert, A. Gatera, W. Geerts, P. Halipre´, F.-J. Hambsch, M. Lebois, A. Oberstedt, P. Marini, M. Vidali, and J. Wilson, “Prompt fission γ-ray spectra characteristics a first summary, ” Physics Procedia, vol. 64, pp. 83–90, 2015. [CrossRef] [Google Scholar]
  7. T. Kaltiaisenaho, “Implementing a photon physics model in serpent 2; fotonifysiikkamallin kehitta¨minen serpent 2-koodiin, ” Master’s thesis, Aalto University, 2016. [Google Scholar]
  8. M. C. White, “Development and implementation of photonuclear crosssection data for mutually coupled neutron-photon transport calculations in the monte carlo n-particle (MCNP) radiation transport code, ” Los Alamos National Lab. (LANL), Tech. Rep., jul 2000. [Google Scholar]
  9. O. Pakari, V. Lamirand, B. Vandereydt, F. Vitullo, M. Hursin, C. Kong, and A. Pautz, “Design and simulation of gamma spectrometry experiments in the CROCUS reactor, ” in ANIMMA, Portoroz, Slovenia, 2019. [Google Scholar]
  10. Y. Nakashima, S. Minato, M. Kawano, T. Tsujimoto, and K. Katsurayama, “Gamma-ray energy spectra observed around a nuclear reactor, ” Journal of Radiation Research, vol. 12, no. 3-4, pp. 138–147, 1971. [CrossRef] [PubMed] [Google Scholar]
  11. D. Fourmentel, P. Filliatre, J. Villard, A. Lyoussi, C. Reynard-Carette, and H. Carcreff, “Measurement of photon flux with a miniature gas ionization chamber in a material testing reactor, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 724, pp. 76–82, oct 2013. [CrossRef] [Google Scholar]
  12. G. Zˇerovnik, T. Kaiba, V. Radulovic´, A. Jazbec, S. Rupnik, L. Barbot, D. Fourmentel, and L. Snoj, “Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers, ” Applied Radiation and Isotopes, vol. 96, pp. 27–35, feb 2015. [CrossRef] [PubMed] [Google Scholar]
  13. K. Ambrozˇicˇ, A. Gruel, V. Radulovic´, M. L. Guillou, P. Blaise, C. Destouches, and L. Snoj, “Delayed gamma determination at the JSI TRIGA reactor by synchronous measurements with fission and ionization chambers, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 911, pp. 94–103, dec 2018. [CrossRef] [Google Scholar]
  14. D. Fourmentel, V. Radulovic, L. Barbot, J.-F. Villard, G. Zerovnik, L. Snoj, M. Tarchalski, K. Pytel, and F. Malouch, “Delayed gamma measurements in different nuclear research reactors bringing out the importance of the delayed contribution in gamma flux calculations, ” in 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA). IEEE, apr 2015. [Google Scholar]
  15. K. Ambrozˇicˇ, V. Radulovic´, L. Snoj, A. Gruel, M. L. Guillou, P. Blaise, C. Destouches, and L. Barbot, “Characterization of gamma field in the JSI TRIGA reactor, ” EPJ Web of Conferences, vol. 170, p. 04001, 2018. [CrossRef] [EDP Sciences] [Google Scholar]
  16. M. Hursin, C. Weiss, P. Frajtag, V. Lamirand, G. Perret, P. Kavrigin, A. Pautz, and E. Griesmayer, “Testing of a sCVD diamond detection system in the CROCUS reactor, ” The European Physical Journal A, vol. 54, no. 5, may 2018. [CrossRef] [Google Scholar]
  17. V. Lamirand, M. Hursin, G. Perret, P. Frajtag, O. Pakari, and A. Pautz, “Future experimental programmes in the CROCUS reactor, ” Conference proceedings of RRFM/IGORR 2016, 2016. [Google Scholar]
  18. O. Pakari, V. Lamirand, G. Perret, P. Frajtag, and A. Pautz, “Kinetic parameter measurements in the crocus reactor using current mode instrumentation, ” IEEE Transactions on Nuclear Science, 2018. [Google Scholar]
  19. O. Pakari, V. Lamirand, G. Perret, L. Braun, P. Frajtag, and A. Pautz, “Current mode neutron noise measurements in the zero power reactor CROCUS, ” in EPJ Web of Conferences, vol. 170. EDP Sciences, 2018, p. 04017. [CrossRef] [EDP Sciences] [Google Scholar]
  20. U. Kasemeyer, R. Fru¨h, J. M. Paratte, and R. Chawla, “Benchmark on kinetic parameters in the CROCUS reactor, ” International Reactor Physics Experiments Handbook (IRPhE), no. 4440, OECD, 2007. [Google Scholar]
  21. J. Paratte, R. Fru¨h, U. Kasemeyer, M. Kalugin, W. Timm, and R. Chawla, “A benchmark on the calculation of kinetic parameters based on reactivity effect experiments in the CROCUS reactor, ” Annals of Nuclear Energy, vol. 33, no. 8, pp. 739–748, 2006. [CrossRef] [Google Scholar]
  22. V. Lamirand, P. Frajtag, D. Godat, O. Pakari, A. Laureau, A. Rais, M. Hursin, G. Hursin, C. Fiorina, and A. Pautz, “The colibri experimental program in the crocus reactor: characterization of the fuel rods oscillator, ” in EPJ Web of Conferences, vol. 225. EDP Sciences, 2020, p. 04020. [CrossRef] [EDP Sciences] [Google Scholar]
  23. V. Lamirand, A. Rais, O. Pakari, S. Hu¨bner, C. Lange, J. Pohlus, U. Paquee, C. Pohl, M. Hursin, A. Laureau, P. Frajtag, D. Godat, G. Perret, C. Fiorina, and A. Pautz, “Experimental results of the first COLIBRI neutron noise campaign in the CROCUS reactor for the european project CORTEX, ” in Submitted to PHYSOR 2020, 2020. [Google Scholar]
  24. V. Lamirand, A. Rais, S. Hu¨bner, C. Lange, J. Pohlus, U. Paquee, C. Pohl, O. Pakari, P. Frajtag, D. Godat, M. Hursin, A. Laureau, G. Perret, C. Fiorina, and A. Pautz, “Neutron noise experiments in the AKR-2 and CROCUS reactors for the european project CORTEX, ” EPJ Web of Conferences, vol. 225, p. 04023, 2020. [Google Scholar]
  25. V. Lamirand, A. Rais, O. Pakari, M. Hursin, A. Laureau, J. Pohlus, U. Paquee, C. Pohl, S. Hu¨bner, C. Lange, P. Frajtag, D. Godat, G. Perret, C. Fiorina, and A. Pautz, “ANALYSIS OF THE FIRST COLIBRI FUEL RODS OSCILLATION CAMPAIGN IN THE CROCUS REACTOR FOR THE EUROPEAN PROJECT CORTEX, ” EPJ Web of Conferences, vol. 247, p. 21010, 2021. [CrossRef] [EDP Sciences] [Google Scholar]
  26. “Scionix holland, mechanical, optical and scintillation properties, https://scionix.nl/scintillation-crystals/#tab-id-4,”2019. [Google Scholar]
  27. DSA-LX, Digital signal analyzer, https://www.mirion.com/products/dsa-lx-digital-signal-analyzer. [Google Scholar]
  28. O. Pakari, V. Lamirand, T. Mager, P. Frajtag, and A. Pautz, “Delayed gamma fraction determination in the zero power reactor CROCUS, ” EPJ N, 2021. [Google Scholar]
  29. O. Pakari et al., “High accuracy measurement of the prompt decay constant in CROCUS using gamma noise and bootstrapped uncertainties, ” Submitted to Annals of Nuclear Energy, 2021. [Google Scholar]
  30. R. Billnert, E. Andreotti, F.-J. Hambsch, M. Hult, J. Karlsson, G. Marissens, A. Oberstedt, and S. Oberstedt, “Novel scintillation detectors for prompt fission γ-ray measurements, ” Physics Procedia, vol. 31, pp. 29–34, 2012. [CrossRef] [Google Scholar]
  31. K. Shah, J. Glodo, W. Higgins, E. van Loef, W. Moses, S. Derenzo, and M. Weber, “CeBr/sub 3/ scintillators for gamma-ray spectroscopy, ” in IEEE Symposium Conference Record Nuclear Science. IEEE, 2004. [Google Scholar]
  32. W. Higgins, A. Churilov, E. van Loef, J. Glodo, M. Squillante, and K. Shah, “Crystal growth of large diameter LaBr3:ce and CeBr3, ” Journal of Crystal Growth, vol. 310, no. 7-9, pp. 2085–2089, apr 2008. [CrossRef] [Google Scholar]
  33. O. Pakari, “Experimental and numerical study of stochastic branching noise in nuclear reactors, ” Ph.D. dissertation, E´cole polytechnique fe´de´rale de Lausanne (EPFL), 2020. [Google Scholar]
  34. M. J. Weber and R.R. Monchamp, “Luminescence of Bi4 Ge3 O12 : Spectral and decay properties, ” Journal of Applied Physics, vol. 44, no. 12, pp. 5495–5499, dec 1973. [CrossRef] [Google Scholar]
  35. O. H. Nestor and C.Y. Huang, “Bismuth germanate: A high-z gammaray and charged particle detector, ” IEEE Transactions on Nuclear Science, vol. 22, no. 1, pp. 68–71, 1975. [CrossRef] [Google Scholar]
  36. S. E. Brunner and D.R. Schaart, “BGO as a hybrid scintillator / cherenkov radiator for cost-effective time-of-flight PET, ” Physics in Medicine and Biology, vol. 62, no. 11, pp. 4421–4439, may 2017. [CrossRef] [PubMed] [Google Scholar]
  37. M. Gierlik, T. Batsch, M. Moszynski, T. Szczesniak, D. Wolski, W. Klamra, B. Perot, and G. Perret, “Comparative study of large NaI(tl) and BGO scintillators for the EURopean illicit TRAfficking countermeasures kit project, ” IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 1737–1743, jun 2006. [CrossRef] [Google Scholar]
  38. V. Lamirand, A. Laureau, O. Pakari, P. Frajtag, and A. Pautz, “Power calibration methodology at the CROCUS reactor, ” EPJ Web of Conferences, vol. 225, p. 04022, 2020. [CrossRef] [EDP Sciences] [Google Scholar]
  39. G. Perret, “Tm-41-14-02 rev. 1: Decay constant and delayed neutron fraction measurements in crocus, ” ERP, LRS, Paul Scherrer Institut, Tech. Rep., 10 2014. [Google Scholar]
  40. G. Knoll, Radiation detection and measurement. John Wiley & Sons, 2010. [Google Scholar]
  41. J. Hubbell, “Photon mass attenuation and energy-absorption coefficients, ” The International Journal of Applied Radiation and Isotopes, vol. 33, no. 11, pp. 1269–1290, 1982. [CrossRef] [Google Scholar]
  42. O. V. Pakari, “Development of current and fast neutron noise measurements in CROCUS, ” Master’s thesis, E´cole polytechnique fe´de´rale de Lausanne (EPFL), 2016. [Online]. Available: http://infoscience.epfl.ch/record/253177 [Google Scholar]
  43. Database of prompt gamma rays from slow neutron capture for elemental analysis. Vienna: International Atomic Energy Agency, 2007. [Google Scholar]
  44. M.-M. Be´, V. Chiste´, C. Dulieu, M. Kellett, X. Mougeot, A. Arinc, V. Chechev, N. Kuzmenko, T. Kibe´di, A. Luca, and A. Nichols, Table of Radionuclides, ser. Monographie BIPM-5. Pavillon de Breteuil, F92310 Se`vres, France: Bureau International des Poids et Mesures, 2016, vol. 8. [Google Scholar]
  45. D. E. Alburger and G. A. P. Engelbertink, “Half-lives ofBe11, c15, n16, o19, andAl28, ” Physical Review C, vol. 2, no. 5, pp. 1594–1596, nov 1970. [CrossRef] [Google Scholar]
  46. H. H. Schmidt, P. Hungerford, H. Daniel, T. von Egidy, S. A. Kerr, R. Brissot, G. Barreau, H. G. Bo¨rner, C. Hofmeyr, and K.P. Lieb, “Levels and gamma energies of Al28 studied by thermal neutron capture, ” Physical Review C, vol. 25, no. 6, pp. 2888–2901, jun 1982. [CrossRef] [Google Scholar]
  47. K. Shozugawa, N. Nogawa, and M. Matsuo, “Deposition of fission and activation products after the fukushima dai-ichi nuclear power plant accident, ” Environmental Pollution, vol. 163, pp. 243–247, apr 2012. [CrossRef] [Google Scholar]
  48. W. Kim, M. Hursin, A. Pautz, L. Vincent, F. Pavel, and D. Lee, “Determination of the activity inventory and associated uncertainty quantification for the CROCUS zero power research reactor, ” Annals of Nuclear Energy, vol. 136, p. 107034, feb 2020. [CrossRef] [Google Scholar]
  49. J. W. Durkee, M. R. James, G. W. McKinney, L. S. Waters, and T. Goorley, “The MCNP6 delayed-particle feature, ” Nuclear Technology, vol. 180, no. 3, pp. 336–354, dec 2012. [CrossRef] [Google Scholar]
  50. V. Lamirand, O. Pakari, F. Vitullo, K. Ambrozˇicˇ, D. Godat, P. Frajtag, and A. Pautz, “Local and high distance neutron and gamma measurements of fuel rods oscillation experiments, ” ANIMMA 2021, 2021. [Google Scholar]
  51. O. Pakari et al., “High distance measurements of the prompt decay constant in the CROCUS reactor using gamma noise, ” Submitted to Annals of Nuclear Energy, 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.