Open Access
Issue
EPJ Web Conf.
Volume 277, 2023
21st Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC21)
Article Number 04001
Number of page(s) 8
Section Technology
DOI https://doi.org/10.1051/epjconf/202327704001
Published online 23 February 2023
  1. D. Farina, “A Quasi-Optical Beam-Tracing Code for Electron Cyclotron Absorption and Current Drive: GRAY,” Fusion Sci. Technol., vol. 52, no. 2, pp. 154–160, Aug. 2007. [CrossRef] [Google Scholar]
  2. L. Figini, “Electron Cyclotron Current Drive Efficiency in the STEP Device,” EPJ Web Conf., p. under review, 2022. [Google Scholar]
  3. T. C. Luce et al., “Generation of Localized Noninductive Current by Electron Cyclotron Waves on the DIII-D Tokamak,” Phys. Rev. Lett., vol. 83, no. 22, pp. 4550–4553, Nov. 1999. [CrossRef] [Google Scholar]
  4. E. Poli et al., “Electron-cyclotron-current-drive efficiency in DEMO plasmas,” Nucl. Fusion, vol. 53, no. 1, p. 013011, Jan. 2013. [CrossRef] [Google Scholar]
  5. V. Shevchenko, Y. Baranov, M. O’Brien, and A. Saveliev, “Generation of Noninductive Current by Electron-Bernstein Waves on the COMPASS-D Tokamak,” Phys. Rev. Lett., vol. 89, no. 26, p. 265005, Dec. 2002. [CrossRef] [PubMed] [Google Scholar]
  6. A. P. Smirnov and R. W. Harvey, “The GENRAY Ray Tracing Code,” 2003. [Online]. Available: https://www.compxco.com/Genray_manual.pdf. [Accessed: 01-Jul-2022]. [Google Scholar]
  7. R. Harvey and M. McCoy, “The CQL3D Fokker-Planck Code,” 2015. [Online]. Available: https://www.compxco.com/cql3d_manual.pdf. [Accessed: 01-Jul-2022]. [Google Scholar]
  8. T. Wilson, “Electron Bernstein Wave (EBW) current drive profiles and efficiency for STEP,” EPJ Web Conf., p. under review, 2022. [Google Scholar]
  9. J. Preinhaelter and V. Kopecký, “Penetration of high-frequency waves into a weakly inhomogeneous magnetized plasma at oblique incidence and their transformation to Bernstein modes,” J. Plasma Phys., vol. 10, no. 1, pp. 1–12, Aug. 1973. [CrossRef] [Google Scholar]
  10. A. Mueck et al., “Demonstration of ElectronBernstein-Wave Heating in a Tokamak via O−X−B Double-Mode Conversion,” Phys. Rev. Lett., vol. 98, no. 17, p. 175004, Apr. 2007. [CrossRef] [Google Scholar]
  11. H. P. Laqua, H. Maassberg, N. B. Marushchenko, F. Volpe, A. Weller, and W. Kasparek, “Electron-Bernstein-Wave Current Drive in an Overdense Plasma at the Wendelstein 7-AS Stellarator,” Phys. Rev. Lett., vol. 90, no. 7, p. 075003, Feb. 2003. [CrossRef] [PubMed] [Google Scholar]
  12. E. Mjølhus, “Coupling to Z mode near critical angle,” J. Plasma Phys., vol. 31, no. 1, pp. 7–28, Feb. 1984. [CrossRef] [Google Scholar]
  13. J. Urban et al., “A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks,” Nucl. Fusion, vol. 51, no. 8, p. 083050, Aug. 2011. [CrossRef] [Google Scholar]
  14. A. K. Ram and S. D. Schultz, “Excitation, propagation, and damping of electron Bernstein waves in tokamaks,” Phys. Plasmas, vol. 7, no. 10, p. 4084, 2000. [CrossRef] [Google Scholar]
  15. S. Saarelma et al., “Self-consistent pedestal prediction for JET-ILW in preparation of the DT campaign,” Phys. Plasmas, vol. 26, no. 7, p. 072501, Jul. 2019. [CrossRef] [Google Scholar]
  16. G. Taylor et al., “Efficient generation of noninductive, off-axis, Ohkawa current, driven by electron Bernstein waves in high β, spherical torus plasmas,” Phys. Plasmas, vol. 11, no. 10, pp. 4733–4739, Oct. 2004. [CrossRef] [Google Scholar]
  17. G. Taylor et al., “Efficient coupling of thermal electron Bernstein waves to the ordinary electromagnetic mode on the National Spherical Torus Experiment,” Phys. Plasmas, vol. 12, no. 5, p. 052511, May 2005. [CrossRef] [Google Scholar]
  18. H. P. Laqua, V. Erckmann, H. J. Hartfuß, and H. Laqua, “Resonant and Nonresonant Electron Cyclotron Heating at Densities above the Plasma Cutoff by O-X-B Mode Conversion at the W7-As Stellarator,” Phys. Rev. Lett., vol. 78, no. 18, pp. 3467–3470, May 1997. [CrossRef] [Google Scholar]
  19. A. Koehn-Seemann, “Numerical investigations of the O-X mode conversion process in MAST Upgrade,” EPJ Web Conf., p. under review, 2022. [Google Scholar]
  20. M. Senstius, “Nonlinear degradation of O-X-B in MAST Upgrade,” EPJ Web Conf., p. under review, 2022. [Google Scholar]
  21. H. Webster, “MAST Upgrade Microwave Heating and Current Drive System Engineering Design Overview,” EPJ Web Conf., p. under review, 2022. [Google Scholar]
  22. A. Ram and A. Bers, “Excitation and emission of electron cyclotron waves in spherical tori,” Nucl. Fusion, vol. 43, no. 11, pp. 1305–1312, Nov. 2003. [CrossRef] [Google Scholar]
  23. H. Igami, M. Uchida, H. Tanaka, and T. Maekawa, “Polarization adjustment of incident electromagnetic waves for optimal modeconversion to electron Bernstein waves,” Plasma Phys. Control. Fusion, vol. 46, no. 1, pp. 261–275, Jan. 2004. [CrossRef] [Google Scholar]
  24. “TRANSP users pages.” [Online]. Available: https://transp.pppl.gov/index.html. [Google Scholar]
  25. V. F. Shevchenko et al., “Long Pulse EBW Start-up Experiments in MAST,” EPJ Web Conf., vol. 87, p. 02007, Mar. 2015. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.