Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 09007 | |
Number of page(s) | 7 | |
Section | Artificial Intelligence and Machine Learning | |
DOI | https://doi.org/10.1051/epjconf/202429509007 | |
Published online | 06 May 2024 |
- Michela Paganini, Luke de Oliveira, and Benjamin Nachman. “CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks”. In: Physical Review D 97.1 (Jan. 2018). issn: 2470-0029. doi: 10.1103/physrevd.97.014021. [Google Scholar]
- Viktoria Chekalina et al. “Generative Models for Fast Calorimeter Simulation: the LHCb case”. In: EPJ Web Conf. 214 (2019), p. 02034. doi: 10.1051/epjconf/201921402034. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Martin Erdmann et al. Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks. 2018. arXiv: 1802 . 03325 [astro-ph.IM]. [Google Scholar]
- Erik Buhmann et al. “Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed”. In: Computing and Software for Big Science 5.1 (May 2021). doi: 10.1007/s41781-021-00056-0. url: https://doi.org/10.1007%2Fs41781-021-00056-0. [Google Scholar]
- Martin Erdmann, Jonas Glombitza, and Thorben Quast. “Precise Simulation of Electromagnetic Calorimeter Showers Using a Wasserstein Generative Adversarial Network”. In: Computing and Software for Big Science 3.1 (Jan. 2019). doi: 10 . 1007 / s41781-018-0019-7. url: https://doi.org/10.1007%2Fs41781-018-0019-7. [Google Scholar]
- Fedor Sergeev et al. “Fast simulation of the LHCb electromagnetic calorimeter response using VAEs and GANs”. In: Journal of Physics: Conference Series 1740.1 (Jan. 2021), p. 012028. doi: 10.1088/1742-6596/1740/1/012028. [Google Scholar]
- Alexander Rogachev and Fedor Ratnikov. “Fast simulation of the electromagnetic calorimeter response using Self-Attention Generative Adversarial Networks”. In: EPJ Web Conf. 251 (2021), p. 03043. doi: 10.1051/epjconf/202125103043. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Alexander Rogachev and Fedor Ratnikov. GAN with an Auxiliary Regressor for the Fast Simulation of the Electromagnetic Calorimeter Response. 2022. doi: 10.48550/ARXIV.2207.06329. url: https://arxiv.org/abs/2207.06329. [Google Scholar]
- S. Amato et al. LHCb calorimeters: Technical Design Report. Tech. rep. CERN-LHCC-2000-036. Geneva: CERN, 2000. [Google Scholar]
- Mehdi S M Sajjadi et al. Assessing Generative Models via Precision and Recall. 2018. arXiv: 1806.00035 [stat.ML]. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.