Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 09027 | |
Number of page(s) | 8 | |
Section | Nuclear Data | |
DOI | https://doi.org/10.1051/epjconf/202124709027 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124709027
IMPROVED THERMAL SCATTERING DATA PREPARATION
1 Massachusetts Institute of Technology Dept. of Nuclear Science and Engineering 77 Massachusetts Avenue, Cambridge Ma. 02139
2 Los Alamos National Laboratory Materials and Physical Data Group (XCP-5)
ameliajo@mit.edu
bforget@mit.edu
jlconlin@lanl.gov
Published online: 22 February 2021
Convenient access to accurate nuclear data, particularly data describing low-energy neutrons, is crucial for trustworthy simulations of thermal nuclear systems. Obtaining the scattering kernel for thermal neutrons (i.e., neutrons with energy ~1 eV or less) can be a difficult problem, since the neutron energy is not sufficient to break molecular bonds, and thus the neutrons must often interact with a much larger structure. The “scattering law” S(α; β), which is a function of unitless momentum α and energy β transfer, is used to relate the material’s phonon frequency distribution to the scattering kernel. LEAPR (a module of NJOY) and GASKET are two nuclear data processing codes that can be used to prepare the scattering law and use different approaches to approximate the same equations. LEAPR uses the “phonon expansion method” which involves iterative convolution. Iteratively solving convolution integrals is an expensive calculation to perform (to ease this calculation, LEAPR uses trapezoidal integration for the convolution). GASKET uses a more direct approach that, while avoiding the iterative convolutions, can become numerically unstable for some α; β combinations. When both methods are properly converged, they tend to agree quite well. The agreement and departure from agreement is presented here.
Key words: thermal neutrons / scattering law / nuclear data
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.